Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Cardiovasc Med ; 11: 1336676, 2024.
Article in English | MEDLINE | ID: mdl-38525193

ABSTRACT

Background: Cardiac autonomic function (CAF) decreases with aging, and Acanthopanax senticosus Harms (ASH) consumption reportedly induces anti-stress effects. This study aimed to assess the effect of continuous supplementation of ASH on CAF during resting and standing tests in the elderly population. Methods: This double-blind, randomized controlled trial was conducted in the morning in a laboratory setting and was carried out between June 2017 and July 2017 at Kambaikan, Doshisha University (Karasuma-higashi-iru, Imadegawa-dori, Kamigyo-ku, Kyoto 602-8580, Japan). In total, 28 community-dwelling elderly individuals (mean ± standard deviation = 72.5 ± 4.5 years) were included. Each subject was instructed to consume ASH or placebo supplements twice daily for 4 weeks. An autonomic reflex orthostatic tolerance recorder was used to measure CAF in pre- and post-intervention phases. Parameters were measured in a seated position and included coefficient of variation of R-R intervals (CVRR), low frequency (LF), high frequency (HF), LF/HF ratio, blood pressure, and heart rate (HR). Changes in each parameter were evaluated before and after standing. All parameters were defined as the difference between the mean value obtained in a standing position for 2 min and that obtained in a 2-min seated position. Results: A two-way analysis of variance revealed a significant group-time interaction effect on CVRR, HF, and ΔLF/HF ratio. Following the intervention, CVRR, HF, LF/HF ratio, systolic blood pressure (SBP), HR, ΔLF/HF ratio, ΔSBP, and ΔHR improved significantly in the ASH group only. Conclusions: Four-week supplementation of ASH improved CAF in community-dwelling elderly individuals during resting and standing tests. Clinical Trial Registration: https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000031218, UMIN Clinical Trials Registry (UMIN000027251).

2.
Food Sci Nutr ; 12(1): 292-297, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268875

ABSTRACT

Pregnancy dramatically changes maternal metabolism and the microbiome. Low-grade inflammation can cause maternal complications and fetal abnormalities. The objective of this open-label, randomized, controlled study was to evaluate the efficacy and safety of orally administered Chlorella, a green alga that is commercially available as a dietary supplement with rich nutrients and dietary fiber for pregnant women with low-grade inflammation. Patients with C-reactive protein levels >0.05 mg/dL (16 weeks gestation, n = 22) were enrolled and randomly allocated to the Chlorella group (n = 10) or control group (n = 12). We conducted blood biochemical tests at 25, 30, and 35 weeks gestation and evaluated the evacuation status (symptoms depending on the Rome IV C2 criteria and laxative usage), side effects, and complications throughout the investigation. We also monitored the status of the offspring. The Chlorella group (n = 0) showed a significantly lower rate of constipation than the control group (n = 8). This study demonstrated the beneficial effects and safety of Chlorella supplementation in pregnant women, which prevented constipation and unnecessary laxative administration.

3.
Molecules ; 29(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257270

ABSTRACT

Brain-derived neurotrophic factor (BDNF) plays an important role in neurogenesis, synaptic plasticity, and cognition. BDNF is a neurotrophin that binds to tropomyosin receptor kinase B (TrkB), a specific receptor on target cell surfaces; it acts on neuronal formation, development, growth, and repair via transcription factors, such as cAMP response element-binding protein (CREB), and it is involved in learning and memory. BDNF expression is decreased in patients with Alzheimer's disease (AD). Exercise and the intake of several different foods or ingredients can increase BDNF expression, as confirmed with lutein, xanthophylls (polar carotenoids), and ethanolamine plasmalogen (PlsEtn), which are present at high levels in the brain. This study examined the effects of combining lutein and PlsEtn using lutein-rich Chlorella and ascidian extracts containing high levels of PlsEtn bearing docosahexaenoic acid, which is abundant in the human brain, on the activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus of Sprague-Dawley rats. Although activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus was not observed in Chlorella or ascidian PlsEtn monotherapy, activation was observed with combination therapy at an equal dose. The results of this study suggest that the combination of Chlorella and ascidian PlsEtn may have a preventive effect against dementia, including AD.


Subject(s)
Alzheimer Disease , Chlorella , Plasmalogens , Humans , Rats , Animals , Brain-Derived Neurotrophic Factor , Lutein , Rats, Sprague-Dawley , Signal Transduction , Brain , Alzheimer Disease/drug therapy
4.
Sci Rep ; 14(1): 110, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167633

ABSTRACT

Non-alcoholic fatty liver disease is a common liver disease worldwide, and is associated with dysregulation of lipid metabolism, leading to inflammation and fibrosis. Acanthopanax senticosus Harms (ASH) is widely used in traditional medicine as an adaptogen food. We examined the effect of ASH on steatohepatitis using a high-fat diet mouse model. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet with ASH extract (ASHE). After 6 weeks, liver RNA transcriptome sequencing (RNA-Seq) was performed, followed by Ingenuity Pathway Analysis (IPA). Our findings revealed that mice fed a high-fat diet with 5% ASHE exhibited significantly reduced liver steatosis. These mice also demonstrated alleviated inflammation and reduced fibrosis in the liver. IPA of RNA-Seq indicated that hepatocyte nuclear factor 4 alpha (HNF4 alpha), a transcription factor, was the activated upstream regulator (P-value 0.00155, z score = 2.413) in the liver of ASHE-fed mice. Adenosine triphosphate binding cassette transporter 8 and carboxylesterase 2, downstream targets of HNF4 alpha pathway, were upregulated. Finally, ASHE-treated HepG2 cells exposed to palmitate exhibited significantly decreased lipid droplet contents. Our study provides that ASHE can activate HNF4 alpha pathway and promote fat secretion from hepatocytes, thereby serving as a prophylactic treatment for steatohepatitis in mice.


Subject(s)
Eleutherococcus , Non-alcoholic Fatty Liver Disease , Animals , Mice , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Eleutherococcus/chemistry , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Inflammation/pathology , Disease Models, Animal , Fibrosis , Mice, Inbred C57BL , Diet, High-Fat/adverse effects
5.
NPJ Sci Food ; 5(1): 22, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34301957

ABSTRACT

This study examined the effects of oral administration of water extract of chlorella (WEC) (100 mg/kg bodyweight) and phenethylamine (10 µg/kg bodyweight) on high-fat diet (HFD)-induced liver damage in mice. Phenethylamine significantly mitigated HFD-induced lipid oxidation (generation of malondialdehyde) and liver damage without markedly decreasing hepatic lipid accumulation. WEC exerted similar effects although with decreased efficacy. In addition, WEC and phenethylamine decreased the methylglyoxal levels and increased the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein levels in the liver. Methylglyoxal is generated from substrates of GAPDH, dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. These facts indicate that methylglyoxal triggers oxidation of accumulated lipid, which generates malondialdehyde and consequently induces liver damage. Suppression of generation of toxic aldehydes by WEC and phenethylamine was also confirmed by maintaining hepatic cysteine, highly reactive to aldehydes. Thus, trace amounts of phenethylamine alleviate HFD-induced liver damage by regulating methylglyoxal via increase of GAPDH.

6.
Front Nutr ; 8: 648073, 2021.
Article in English | MEDLINE | ID: mdl-34136514

ABSTRACT

Recent studies have accumulated evidence that the intestinal environment is strongly correlated with host diet, which influences host health. A number of dietary products whose mechanisms of influence operate via the gut microbiota have been revealed, but they are still limited. Here, we investigated the dietary influence of Chlorella, a green alga commercially available as a dietary supplement. A randomised, double-blind, placebo-controlled crossover trial including 40 Japanese participants with constipation was performed. In this study, the primary outcome and secondary outcome were set as defecation frequency and blood folate level, respectively. In both outcomes, no significant differences were detected compared to the control intake. Therefore, we analysed the gut microbiome, gut metabolome, and blood parameters in an integrated manner as an exploratory analysis. We revealed that the consumption of Chlorella increased the level of several dicarboxylic acids in faeces. Furthermore, the analysis showed that individuals with low concentrations of faecal propionate showed an increase in propionate concentration upon Chlorella intake. In addition, increasing blood folate levels were negatively correlated with defecation frequency at baseline. Our study suggested that the effect of Chlorella consumption varies among individuals depending on their intestinal environment, which illustrates the importance of stratified dietary management based on the intestinal environment in individuals.

7.
Oncol Rep ; 45(3): 1193-1201, 2021 03.
Article in English | MEDLINE | ID: mdl-33650674

ABSTRACT

Acanthopanax senticosus (Rupr. et Maxim) Harms (ASH), also known as Siberian ginseng or eleuthero, is a hardy shrub native to China, Korea, Russia and the northern region of Japan. ASH is used for the treatment of several diseases such as heart disease, hypertension, rheumatoid arthritis, allergies, chronic bronchitis, diabetes and cancer. In the present study, the inhibitory effect of the root extract of ASH (ASHE) on HuH­7 and HepG2 liver cancer cells was examined. ASHE suppressed liver cancer cell proliferation by inducing cell cycle arrest at the G0/G1 phase, as well as apoptosis, as indicated by the increased number of Annexin V and 7­AAD­positive cells. Furthermore, the expression of LC3­II, an autophagy marker, in these cells also increased post treatment with ASHE. LC3­II induction was further enhanced by co­treatment with chloroquine. Fluorescence and transmission electron micrographs of ASHE­treated liver cancer cells showed the presence of an increased number of autophagic vesicles. A decreased protein expression level of run domain Beclin­1­interacting and cysteine­rich domain­containing, an autophagy inhibitor, with no change in RUBCN mRNA expression was observed, indicating activation of the autophagosome­lysosome fusion step of autophagy. In conclusion, ASHE exerts cytostatic activity on liver cancer cells via both apoptosis and autophagy, and may serve as a potential therapeutic agent for management of liver cancer and autophagy­related diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy-Related Proteins/antagonists & inhibitors , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Eleutherococcus/chemistry , Plant Extracts/pharmacology , Apoptosis/drug effects , Autophagy-Related Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Plant Roots/chemistry
8.
Nutrients ; 12(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825362

ABSTRACT

Chlorella is a green unicellular alga that is commercially produced and distributed worldwide as a dietary supplement. Chlorella products contain numerous nutrients and vitamins, including D and B12, that are absent in plant-derived food sources. Chlorella contains larger amounts of folate and iron than other plant-derived foods. Chlorella supplementation to mammals, including humans, has been reported to exhibit various pharmacological activities, including immunomodulatory, antioxidant, antidiabetic, antihypertensive, and antihyperlipidemic activities. Meta-analysis on the effects of Chlorella supplementation on cardiovascular risk factors have suggested that it improves total cholesterol levels, low-density lipoprotein cholesterol levels, systolic blood pressure, diastolic blood pressure, and fasting blood glucose levels but not triglycerides and high-density lipoprotein cholesterol levels. These beneficial effects of Chlorella might be due to synergism between multiple nutrient and antioxidant compounds. However, information regarding the bioactive compounds in Chlorella is limited.


Subject(s)
Antihypertensive Agents , Antioxidants , Chlorella , Dietary Supplements , Hypoglycemic Agents , Immunologic Factors , Micronutrients/isolation & purification , Micronutrients/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Animals , Chlorella/chemistry , Drug Synergism , Ergocalciferols , Folic Acid , Heart Disease Risk Factors , Humans , Hypolipidemic Agents , Lutein , Vitamin B 12
9.
Biochem Biophys Res Commun ; 404(1): 121-6, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21095179

ABSTRACT

We used the forced swimming test to investigate the influence of Chlorella powder intake during muscle stress training in mice. After day 14, swimming time was about 2-fold longer for Chlorella intake mice than for control swimming mice. Microarray analysis revealed that the global gene expression profile of muscle from the Chlorella intake mice was similar to that of muscle from the intact (non-swimming) mice, and the profile of these two groups differed from that of the control (swimming) mice. Gene ontology and pathway analyses of gene expression data showed that oxidoreductase activity and the leukotriene synthesis pathway were repressed in the Chlorella intake mice following the swimming test. In addition, measurements of free fatty acids, glucose, triglycerides, and lactic acid in the blood of Chlorella intake mice were higher than that of control mice. These findings suggest that metabolism in tissues is altered by Chlorella intake.


Subject(s)
Chlorella , Liver/drug effects , Muscle, Skeletal/drug effects , Plant Preparations/pharmacology , Stress, Physiological/drug effects , Swimming , Animals , Blood Glucose/metabolism , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Gene Expression Profiling , Glucose/metabolism , Lactic Acid/blood , Lactic Acid/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Muscle, Skeletal/metabolism , Powders , Stress, Physiological/genetics , Triglycerides/blood , Triglycerides/metabolism
10.
Phytother Res ; 24(1): 43-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19517465

ABSTRACT

A Chlorella powder was tested in a total of 129 in vitro receptor binding assay systems. The results showed a potent inhibition of this powder on cysteinyl leukotriene CysLT2, and glutamate AMPA in a dose-concentration manner with IC(50) mean +/- SEM values of 20 +/- 4.5 microg/mL and 44 +/- 14 microg/mL, respectively. Other moderate and weak activities reflected in competitive binding experiments were seen versus adenosine transporter; calcium channel L-type, benzothiazepine; gabapentin; kainate, NMDA-glycine; inositol trisphosphate IP(3); cysteinyl CysLT(1), LTB(4); purinergic P(2Y); tachykinin NK(2); serotonin 5-HT(2B) and prostanoid, thromboxane A(2). Together, the results suggest that the various inhibitory effects of Chlorella powder in these receptor binding assays could reflect its actions in modulating Ca(2+)-dependent signal related targets and might be relevant to the mechanisms of its biological effects. These results reveal important potential biochemical activities that might be exploited for the prevention or treatment of several pathologies. From these results, the possible therapeutic usage of the product is discussed.


Subject(s)
Chlorella/chemistry , Ion Channels/metabolism , Nucleoside Transport Proteins/metabolism , Receptors, Leukotriene/metabolism , Receptors, Neurotransmitter/metabolism , Animals , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Guinea Pigs , Humans , Inhibitory Concentration 50 , Male , Protein Binding , Rats , Rats, Wistar
11.
Int J Food Sci Nutr ; 60 Suppl 1: 89-98, 2009.
Article in English | MEDLINE | ID: mdl-19107625

ABSTRACT

A Chlorella powder was tested in 118 in vitro enzyme assay systems. The powder showed potent inhibitions of peptidase cathepsin S, thromboxane A(2) synthase and cyclooxygenase-2 in a dose-concentration manner with IC(50)+/-standard error of the mean values of 3.46+/-0.93 microg/ml, 3.23+/-0.69 microg/ml, and 44.26+/-9.98 microg/ml, respectively. Other activities observed were inhibitions of tumor necrosis factor-alpha converting enzyme, protein tyrosine phosphatase (SHP-2), calpain, protein kinases and protein tyrosine phosphatases. Chlorella powder had no significant effect on cyclooxygenase-1. These actions to inhibit cyclooxygenase-2 and thromboxane synthase could contribute to the purported anti-inflammatory and anti-thrombotic effects of Chlorella. These results reveal important potential biochemical activities to be developed that, if confirmed by in vivo studies, might be exploited for the prevention or treatment of several serious pathologies, including inflammatory diseases, immune and cancer.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chlorella , Enzyme Inhibitors/pharmacology , Plant Preparations/pharmacology , ADAM Proteins/antagonists & inhibitors , ADAM17 Protein , Calpain/antagonists & inhibitors , Cathepsins/antagonists & inhibitors , Cyclooxygenase 2/metabolism , Group II Phospholipases A2/antagonists & inhibitors , Peptide Hydrolases/metabolism , Phosphotransferases/antagonists & inhibitors , Platelet Aggregation Inhibitors/pharmacology , Protein Tyrosine Phosphatases/antagonists & inhibitors , Thromboxane-A Synthase/antagonists & inhibitors
12.
New Phytol ; 165(2): 513-24, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15720662

ABSTRACT

A fructosyltransferase that transfers the terminal (2 --> 1)-beta-linked D-fructosyl group of fructo-oligosaccharides (1(F)(1-beta-D-fructofuranosyl)(n) sucrose, n >/= 1) to HO-6 of the glucosyl residue and HO-1 of the fructosyl residue of similar saccharides (1(F)(1-beta-D-fructofuranosyl)(m) sucrose, m >/= 0) has been purified from an extract of the bulbs of onion (Allium cepa). Successive column chromatography using DEAE-Sepharose CL-6B, Toyopearl HW65, Toyopearl HW55, DEAE-Sepharose CL-6B (2nd time), Sephadex G-100, Concanavalin A Sepharose, and Toyopearl HW-65 (2nd time) were applied for protein purification. The general properties of the enzyme, were as follows: molecular masses of 66 kDa (gel filtration chromatography), and of 52 kDa and 25 kDa (SDS-PAGE); optimum pH of c. 5.68, stable at 20-40 degrees C for 15 min; stable in a range of pH 5.30-6.31 at 30 degrees C for 30 min, inhibited by Hg(2+), Ag(+), p-chloromercuribenzoic acid (p-CMB) and sodium dodecyl sulfate (SDS), activated by sodium deoxycholate, Triton X-100 and Tween-80. The amino acid sequence of the N-terminus moiety of the 52-kDa polypeptide was ADNEFPWTNDMLAWQRCGFHFRTVRNYMNDPSGPMYYKGWYHLFYQHNKDFAYXG and the amino acid sequence from the N-terminus of the 25-kDa polypeptide was ADVGYXCSTSGGAATRGTLGPFGLL VLANQDLTENTATYFYVSKGTDGALRTHFCQDET. The enzyme tentatively classified as fructan: fructan 6(G)-fructosyltransferase (6G-FFT). The enzyme is proposed to play an important role in the synthesis of inulin and inulinneo-series fructo-oligosaccharides in onion bulbs.


Subject(s)
Hexosyltransferases/isolation & purification , Hexosyltransferases/metabolism , Oligosaccharides/biosynthesis , Onions/enzymology , Amino Acid Sequence , Carbohydrate Sequence , Enzyme Stability , Fructosamine/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Data , Molecular Structure , Oligosaccharides/chemistry , Sequence Homology, Amino Acid , Substrate Specificity , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...